
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

AD826483

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
and their contractors; Critical Technology; NOV
1967. Other requests shall be referred to Air
Force Rome Air Development Center, EMATS,
Griffiss AFB, NY. This document contains
export-controlled technical data.

radc, usaf ltr, 27 aug 1973



<w 
00 RAOC-TR-68-19 

^1 

CO 

00 

§ 
S SPACING HERTURBATICN TECHNIQUES 

FOR ARRAY OPTIMIZATION 

F. I. Tseng 
David K. Cheng 

Syracuse University Research Institute 

TECHNICAL REPORT NO. RAOC-TR-68-19 
November 1967 

This document is subject to special 
export controls and each transmitted 
to foreign governments, foreign na- 
tionals or representatives thereto may 
be made only with prior approval of 
RADC (EMATS), GAFB, N.Y. 
The distribution of tills document is 
limited under the U.S. Export Control 
Act of 1949. 

Sponsored by: Advanced Research Projects Agency 
under ARPA Order No. 1010 

Monitored by:  Rome Air Development Center 
under Contract No. F30602-68-C-C067 

Rome Air Development Center 
Air Force Systems Command 

Griffiss Air Force Base, New York 

"■ t"! 

SD DC 

|{FEB1SW8 
-„J! 

■ 

; 
i 



••PH.« inns or other data are used for any purpose 
When US Government drawings, specifica ^f' ^ °   t operation, the government 
other than a definitely related g^^^^^on whatsoever; knä  the fact that 
thereby incurs no responsibility ^^f^^any way supplied the said 

patented invention that may in any way be related thereto. 

^ 

Do not return this copy. Retain or destroy. 

   I>    ■ ; J'U 



Bfc.., 

SPACING PERTURBATION TECHNIQUES 

FOR ARRAY OPTIMIZATION 

F. I. Tseng 

David K. Cheng 

Syracuse University Research Institute 

This document is subject to special 
export controls and each transmittal 
to foreign governments, foreign na- 
tionals or representatives thereto may 
be made only with prior approval of 
RADC (EMATS), GAFB, N.Y. 13440. 

Sponsored by: Advanced Research Projects Agency 
under ARPA Order No. 1010 

Monitored by:  Rome Air Development Center- 
under Contract No. F30602-68-C-0067 



FOREWORD 

This report was prepared by Messrs F. I. Tseng and David K. Chen,x 
of the Electrical Engineering Department, College of Engineering, Syracuse 
University Research Institute, Syracuse, New York under RADC Contract No. 
F30602-68-C-0067, ARPA Order No. 1010. 

This research was supported by the Advanced Research Projects Agency 
of the Department of Defense and was monitored by RADC Project Engineer 
Joseph Lovecchio (EMATS), 

Information in this report is embargoed under ti:e U.S. Export Control 
Act of I9U9, administered by the Department of Commerce. This report may 
be released by departments or agencies of the U.S. Government to depart- 
ments or agencies of foreign governments with which the United States has 
defense treaty commitments. Private individuals or firms must comply with 
Department of Commerce export control regulations. 

ii 

ammtiiliämÜBWIM 



SmCING PRRTURBATION TF.nHNIQ.UES FOR ARRAY OPTIMIZATION 

by 

F. I. Tseng and David K. Cheng 
Electrical Engineering Department, Syracuse University, Syracuse, N. Y. 

ABSTRACT - A spacing perturbation technique is developed for the maximization 

of the directive gain and the signal-to-noise ratio of a linear array of identi- 

cal elements. The initial array can he of uniform or nonuniform spacings with 

any given excitation amplitude and phase distribution. After an optimum set 

of spacings is obtained by perturbation, the excitation amplitudes and phases 

can be adjusted for further improvement in the performance index of interest. 

The optimum spacings can be recalculated and the cycle of iteration repeated 

if desired. The spacing perturbation technique is based on a new optimiza- 

tion theorem; there is no need to solve nonlinear equations or to rely on a 

trial-and-error procedure. In all cases computed, the iteration process^ 

converges rapidly. Illustrative examples are given for both broadside and 

endfire operations. Typical radiation patterns are plotted ^h bring out 

a number of interesting features of the optimization process. 
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I.  INTRODUCTION 

The optimization of appropriate performance indices of discrete 

antenna arrays is a problem of primary importance for antenna engineers. 

The directive gain and the output signal-to-noise ratio are two of the 

more important performance indices. A number of articles (Uzkov, 19^6; 

Uzsoky and Solymar, 1956; Tai, 196^) have dealt with the problem of gain 

maximization for linear arrays with uniformly spaced elements. Methods 

are also available (Cheng and Tseng, 19^5; Lo, Lee and Lee (I966), for 

the maximization of the directive gain of antenna arrays with an arbi- 

trary configuration. When the performance index of interest is the 

signal-to-noise power ratio at the output of an array, it is also pos- 

sible to determine the optimum amplifications and phase shifts in the 

array elements (Cheng and Tseng, 1966). Tseng and Cheng (l967a,b) 

further extended their studies on gain and signal-to-noise ratio maxi- 

nr.zation to include random variations in element positions and in 

excitation amplitudes and phases. 

All of the above-mentioned articles started with an array of a 

given configuration, and optimization is achieved by properly adjusting 

the excitation amplitudes and phases in the array elements. However, 

for a given set of amplitude and phase values, uniform spacing does not 

yield the highest obtainable gain or signal-to-noise ratio. Recently 

Butler and Unz (1967) tackled the problem of determining the current 

distribution and the element spacings which will combine to give a best 

possible beam efficiency or gain, resulting in arrays with nonuniforra 



spaeings. They found the optimum element positions by checking the spacing 

deviations in the direction of the maximum change in the largest eigenvalue 

of a pencil of matrices. An approximate, perturbation method was also dis- 

cussed. It appears that their method is quite tedious to apply and its 

success depends critically upon a proper initial choice of element spaeings 

which must he close to the optimum. The signal-to-noise performance of the 

array was not considered. 

This paper presents a spacing perturbation technique for the optimi- 

zation of the directive gain or the signal-to-noise ratio of an array. The 

starting point can be an array of arbitrary (uniform or nonuniform) spaeings 

with nonoptimum excitation amplitudes and phases. The basis of the technique 

lies in an optimization theorem which will be proved in the Appendix. After 

an optimum set of spaeings is obtained, the excitation amplitudes and phase 

shifts can be adjusted for farther improvement in the desired performance 

index; then the optimum spaeings can be recalculated for the new excitation 

and the cycle repeated if desired. In particular, the technique provides a 

method for improving the gain or the output signal-to-noise ratio of an 

array with any given excitation and spaeings by spacing perturbation until 

a maximum is obtained. Illustrative examples for both broadside and endfire 

arrays are included and some interesting numerical results are given. 

TI.  GAIN OR PNB AS THE PRRTOBMANCE INDEX 

We consider a linear array of 2N + T, identical antenna elemenus sym- 

metrically located about the origin, with TI = 1 when the total number of 

elements is odd, and ^ = 0 when the total number of elements is even and 
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the center element is absent. Let eo be the angle which the direction of the 

signal makes with the array axis.  The antenna elements do not have to be 

Isotropie, but they will be assumed to be symmetrically excited. Hence, if 

the excitation in the mth element from the origin is Im exp U\)>   that in 

the -mth element on the other side is Im exp (-J*m)^ where 

$ = - (2jtd /\) cos 9 - 0   . (l) 
m    v  nr      o   m 

In (1). d is the distance of the mth element from the origin, \ is the v " m 

signal wavelength, and 0 is the phase shift from the cophasal operation. 

The array factor will then be 
N 

EU) = T, g2 + ^ Im cos (D^ - *ra) (2) 

m=l 

where 

^ = (2rtd/\)(cos e - cos eo) (3) 

D = d /d 00 
m   m' 

and d, a normalizing distance, may be any choice of convenience. For example, 

if one starts with a uniformly spaced array, it would be natural to make  d the 

spacing between neighboring elements. We define the output signal-to-noise 

ratio as the ratio of the power received per unit solid angle in the direction 

of the signal to the average noise power received per unit solid angle. Thus, 

G  „ ^ (5) 

i^ j dj I |E(ik)|2w(e, 0) sine de 
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where 

w(e, 0) = g(e, 0) T(e, *) (6) 

g(e,  0) = element power pattern function u) 

T(e,  0) = spatial distribution function of noise power (8) 

It is convenient to normalize g(e,  0) in (7) with respect to its value in the 

direction of the signal;  i.e.,  g^, 0O) = 1.    The composite function w(e,.  0) ^ 

iu (6) can be viewed as a weighting function on the array power pattern  ',£(*) |   . 

We note that (5) becomes the expression for directive gain, Go, when T(e,0) = 1; 

hence it serves as the starting point for the optimization of both GSNR and Go. 

Clearly, both are affected by the normalized element positions  {Dj  and the 

excitations  (I , 0 1.    We shall consider their effects separately in the 
m     m 

following sections. 

TTT.     OPTIMISATION BY SPACING PERTURBATION 

Let an array of 2N + ^ elements be given by specifying its element power 

pattern function g(e,  0),   its normalized element positions  (D°} and its element 

excitations  (Iffi exp (j^)).    We wish to determine the required spacing pertur- 

bations such that GSNR in a specified direction will be maximized in a given 

noise environment T(e,  0).    Let the perturbed normalized element positions be 

{D ). m 

D    =D0
+x     . (9) m       m       m 

where x represents the spacing perturbation for the mth element and xm « 1. 
m 

Substitution of (9) in (2) yields approximately 



N 

E(\|0 = E0(^) - Y  x [I * sin (D0t - 6)], (iO) 
*   ' £_,    mm m in    ' 

m=l 

where E0(^)  is the unperturbed     array factor      with D    substituted for D^ in 

(2).    Using (10), we can write (5) in the following form: 

G ML_ , (ID 
bWK     A - 2xlß + x'Cx 

where 

2jt n 

A = j-   I     d0 f   |E0(t)|2 w(e,  <t>) sin 6 d9 (12) 

0 0 

x    = LXjj  Xg,   ...  x  ,   •>'>  XjJ \l-2) 

is the transpose of the column matrix of spacing perturbations x;  ß is a column 

matrix of typical element 

2it it 

ßm = ifc /    d0/  Iml|E0(l|r) w(e'  0)  Sin ^m1" " ^ sin 0 ^  i (l4) 
0 0 

and C = [ c . ]   is an N x N square matrix with 
mk 

2n it 
1 

c 'mk 
= Ä /    d* f   Vkl|'2w(e,0) Sin ^ " ^m5  Sirl ^k* " ^ Sin e d0'     (15) 

It can readily be shewn that C is symmetric and positive definite.    Use 

can then be made of the theorem proved in the Appendix, which enables us to 

conclude: 



,0/^,2 r(o), 
a) Max. G   =  .-■-.i ." (I6) 

,.     -S1:R    A - ß' C ß 

~-1 - (17) 

Equations (l6) and (l?) give the results of a first-order perturbation. After 

the components of JL have been determined from (l?), they can be substituted 

back in (9). One can then use (5° + x^)  as the new normalized element-position 

column matrix and perform a second-order perturbation to obtain further improve- 

ment in the performance index. This process can be repeated until it becomes 

evident that further iteratica yields a negligible improvement. For the many 

cases we have computed, some of which will be presented in sections V and VI 

as illustrative examples, it is found that convergence toward optimum values 

usually takes place very quickly; seldom are more than two iterations required. 

IV.  OPTIMIZATION BY EXCITATION ADJUSTMENTS 

The spacing perturbation technique developed in the preceding section 

yields the required element positions in order to maximize GSNR for a given 

set of excitation parameters. Even if one starts with a uniformly spaced 

array, the element spacings will no longer be uniform after the perturbation. 

Now this perturbed, nonuniformly spaced array can be further optimized by 

proper amplifications and phase shifts following the array elements. With 

this in mind, we let yo = Io, yn = In cos ^ and yN+n = In sin 0n (n=l,2,.. .,N). 

Furthermore, let hjt) = T]/2,  h^)  = cos V, and \+nW  - sin D^ (n=l,2,.. .,N) 

Equation (5) can then be converted to the following form: 

y' K K y 
3SNR = 
a '0_"0" , (18) 

y' B y 



(19) 

where 

y' = [y0; y^ v^ '•'•' y2N] 

hi = [h^(0),  ^(0),  h2(0),   ....,h2I,T(0)] (20) 
o o 

and B = [b. .]   is a  (2N + n) X  (2N "■    i/   s^are matrix with 

2it it 

b. .  = r^-   r    d0 r  h.(*) h.(*) V(e,0)  sin a do   . (21) 
0 0 

G   in (18) is expressed as a ratio of two quadratic forms. Since B is 
SNR   \  /     *- 

symmetric and positive definite, we know (Cheng and Tseng, 1965) that GSNR can 

be maximized by choosing the column matrix y = yM: 

v, = B"1 h (22) 
•'M      o 

and that 

Max- Gsim = K I'1 K ■ (25) 

(y = yM) 

Equation (22) completely specifies the amplifications and phase shifts required 

to obtain the maximum possible GSNR, as given in (23), for the perturbed array. 

If the performance index of interest is directive gain Go, yM will yield the 

required excitation amplitudes and phases to maximize Go. We have now reached 

a second submaximum, which may possibly be further improved by holding the 

excitation unchanged and again perturbing the spacings. The cycle may be 

repeated until further adjustments are no longer worthwhile. 

We emphasize that this alternate spacing perturbation and excitation 

adjustment procedure of seeking a maximum performance index can be applied to 



an array which initially has an arbitrary, nonuniform spacing and an 

arbitrary distribution of excitation amplitudes and phases. One could 

start this double optimization procedure either by perturbing the element 

spacings first or by adjusting the excitation amplitudes and phases first. 

Some typical examples of both approaches will be presented in the following 

two sections. 

V. EXAMPLES FOR GAIN OPTIMIZATION 

We consider a symmetrical linear array of seven Isotropie elements. For 

Isotropie elements g(0, 0) = 1 and the expressions in (lh),   (15) and (21) for 

ß . c  and b  respectively are simplified. We shall examine the broadside 
^m' mk    ij 

and endfire operations separately. In each case the initial interelement 

spacings are chosen to be uniform and of such a value as to yield a maximum 

gain with a uniform cophasal excitation. 

(a) Broadside Operation (0 = 90 ) 

The characteristics of the initial array are: D° - dm/d » m, d - 1.77(^/
2)i 

1° = 1. (5° = 0°, for all m. This uniformly excited, equally spaced, 7-element 
m   ' m    ' 

broadside array has a gain of 11.52. By keeping the amplitude uniform and 

perturbing the interelement spacings, the gain can be increased to 11.51. Al- 

though this is not a big increase, we note that it equals the value achieved by 

adjusting the amplitudes and keeping the spacing? uniform (Tai, 1964). If we 

further optimize our space-perturbed array by amplitude adjustments, using the 

method discussed in section IV, we obtain the results listed in the third row 

of Table I. The final data for the doubly optimized array by repeating the 

above spacing perturbation and amplitude adjustment cycle are shown as the last 



row of Tablt I. The optimized array has a gain of 11.63 which is only a few 

percent higher than that for the unperturbed uniform array. This implies that 

an equally spaced and uniformly excited broadside array at d = 1.77(V2) is 

very close to the optimum arrangement. The excitation amplitudes and element 

positions of one-half of the symmetrical optimized array are depicted in Fig. 

1(a). The radiation patterns for both the equally spaced, uniformly excited 

array and the optimized array are shown in Fig. l(b). The patterns do not 

differ much; but it is reassuring to find that the optimized array also has 

a better sidelobe structure. 

(b) Endfire Operation (0^ = 0 ) 

For endfire operation a uniformly excited, equally spaced array has a 

gain maximum when the interelement spacing is around 0.8^ X./2. The correspond- 

ing results obtained by (l) spa:ing perturbation, (2) excitation adjustments 

after spacing perturbation, and (5) iteration of the above two steps are tabu- 

lated in Table II. In this case optimization by spacing perturbation and 

excitation adjustments is more effective in increasing the gain. The final 

optimized, nonuniformly excited and unequally spaced array is seen to have a 

gain of 20.0*. an increase of 85 percent from the original value of 10.8.. 

VI. EXAMPIES FOR SNR OPTIMIZATION 

Calculations for the optimization of GSNR depends, of course, on the 

spatial distribution function of noise power. For illustration purpose, we 

assume that the noise distribution has no 0-variation and has the form of 

T(i), as shown in Fig. 2. It is consisted essentially of two parts: one a 



1+a 
2 * - h 

1 + a cos (- gT )rt 

^^2 ^1 h+*2 

Fig. 2 - Spatial Distribution of Noise Power. 
\|; = (2jtd/\)(cos e - cos 0 ). 

constant part and the other a superimposed part which is assumed to be of a 

cosine-squared form and of a finite extent. The superimposed part can be 

used to simulate an interference or clutter distribution whose amplitude, 

location and extent can be varied by changing a, ^ and tg ^spectively. 

The termination point of the !(*) curve is left unspecified because it depends 

on whether the array under consideration is operating in a broadside or an 

endfire mode. A large quantity of numerical data have been obtained. Some 

typical results follow. 

(a) Broadside Operation (e^ = 90 ) 

Again we consider a linear array of seven Isotropie elements. The 

parameters chosen for T(t) in Fig. 2 are: a = 15, ^ = (l/1+)(2nd/x)> 

\lf = (1/I2)(2rtd/X). The results for the (l) space-perturbed, (2) excitation- 

adjusted (by amplification), and (5) optimized arrays are listed in Table III. 

We note that large improvements in GQm are possible by optimization through 

10 



either spacing perturbation or excitation adjustments and that the Gsm  of 

the optimized array is about 11.^ times that of the original uniform array. 

Of course, the array optimized for a maximum SNR is not the same as the one 

for a maximum gain. This can be seen readily by comparing the excitation 

amplitudes and interelement spacings in Tables I and III. The directive 

gain of the SNR-optimized array in Table III (sketched in Fig. 5(a)) is 10.6. 

The radiation patterns are plotted in Fig. 5(b), in which the spatial dis- 

tribution of the noise or interference power is also shown. It is interesting 

to see that, at the expense of a slightly wider main beam, the sidelobes of 

the optimized array are everywhere lower than those of the uniform array. In 

particular, the first sidelobe, which normally occurs in a region where the 

noise power is high, is much suppressed and its position slightly shifted. 

(b) Endfire Operation (9 = 0 ). 

For computation in the 7-element endfire case, we use a T(i|f) similar 

to the broadside case above; but t, and ^2 values are chosen differently on 

account of a different visible range as well as a different sidelobe struc- 

ture. The results are tabulated in Table IV and plotted in Fig. k.    We see 

several noteworthy points from this example. First, GSNR is increased from 

a value of 15.8 for the uniform, cophasal. and equally spaced array to 891.^ 

(56.4 times). The absolute GgN values for the broadside and endfire cases 

(e.g.: l6.0 versus 15.8, and 181.9 versus 891.^) are not too meaningful 

because the noise power distribution function T(t) has not been normalized . 

with respect to the different |E0(0)| values. However, the percentage of 

possible improvement in G„..-  is significant in each case, and we see that one 

11 



can do much more for endfire operation. Secondly, Fig. k  shows that the 

improvement in GqM is accompanied by a better sidelobe structure with an 

emphatic suppression in the region of high noise power. Thirdly, computa- 

tion reveals that, along with the vast increase in GqT_, the directive gain 

of the SNR-optimized array is also increased to 15.5 from 10.^ for the uni- 

form cophasal array. 

VII. CONCLUSION 

Based upon a new optimization theorem, a spacing perturbation technique 

has been presented for the maximization of the directive gain and the signal- 

to-noise ratio of an array of identical elements. The technique can be applied 

to an array which initially has nonuniformly spaced elements with arbitrary 

excitation amplitudes and phases. After an optimum set of spacings is obtained 

by perturbation, the excitation amplitudes and phase shifts can be adjusted 

for further improvement in the performance index of interest. The optimum 

spacings can be recalculated and the cycle of iteration repeated if desired. 

In all cases computed, the iteration process converges very rapidly, seldom 

requiring more than two cycles. The present technique does not require the 

solution of nonlinear equations, and it does not involve a trial-and-error 

procedure. Numerical examples and typical radiation patterns are included. 

It is noted that the final, optimized array will always have nonuniform inter- 

element spacings and is therefore relatively insensitive to frequency variations. 

12 



VIII.    APPENDIX 

Theorem.    If a quantity P can be expressed in terms of an N x 1 real column 

vector x as 

P = A - 2x,ß + x*  C x , (24) 

where A is a consent, ß is another N x 1 real column vector, x' is the trans- 

pose of x, and C is an N x N positive definite, symmetrio,'square matrix, then 

a) min. P = A - ß' C-1 ß ,  and (25) 
(x = ^) 

b) *M = C'1 P (26) 

Proof: If C is positive definite, it is known that (Gantraacher, 1959) 

(ß' C"1 ß)(x' C x) > (x' ß)2 (27) 

or 

x' C x^ ~— (x1 ß)2 , (28) 
ß' c""- ß 

where the equality sign applies when 

=-1 x = \  = C"Xß . (29) 

Let c = ß' C-1 ß > 0, and b = x1 ß. We have, from {2k)  and (28), 

P=A-2b+x, Cx 

2 
b > A - 2b + — (50) 

But, 

c 

2 
A-2b+—=A-c+- (c-b)2 

c c 

> A - c (51) 

15 



Combining (50) and (51), we obtain 

P > A - ß' C"1 ß , (52) 

where the equality sign holds with (29); hence ;the theorem is proved. 
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TABLE  I 

Gain Optimization for Broadside Array-Initial Array: 
7 isotropic elements,  equally spaced, 
uniformly excited,  and cophasal.   (d    =0) 

I o h ^ h (Wf ^Ä ^i G 
0 

Uniform array     [l.OO 1.00 1.00 1.00 1.77 1.77 1.77 11.52 

Spaced-perturbed 
array 

same as above 1.81 1.78 1.65 11.51 

Exc.-adjusted 
array 

Optimized 
array 

1.00 

1.00 

1.00 0.98 0.85 same as above 11.61 

0.99 0.96 q.82 .i.79 1>76 ..;.66      11.65 

TABLE jEI 

Gain Qptlmlzation for Endfire Array-Initial arra- 
7 isotropic elements, equally spaced, 
uniformly excited, and cophasal. (d = 0) 

Excitations ^i-%i (vv! ^A G 
0 

Uniform 
cophasal 
array 

i V1-00 1^1.00 i2=i.oo i3=i.oo 
1    o!8J+ 
1 

o!8i+ 0.8^ 10.8. 
Vo° 03=0° 02=OO 03=O0 

Space- 
perturbed 
array 

same as above                  '    0.91 0.90 0.82 11.5; 

Exc- 
adjusted 
perturbed 
array 

I =1.00 
0 

1^1.00 i2=o.99 l3=0.89 
same as above ^.6; 

0o=oo 
01=7.9O 02=LT.?0 05=57.2O 

Optimi zed 
| array 

I =1.00 
i 0 

13=0.99 I3=0.9^ I5=0.75 
0.86 0.8.U n  7T         or» n 

0=0° 
0 0^1^^ 02=55.9O tyll-f 

mmVB V 
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TABLE  III 

SNB Optimization    for Seven-Element Broadside Array 

1 /27tdx , 1   /2jtdv 
a = 15„     %   - r i-f-), % = -73 (-T-),     d    = 0. 'l      J+ v \ 12  v  \ 

I o h h b      (dl-dol (vv! ^Ä GSNR 

Uniform array 1.00 

1  

1.00 1.00 1.00 1.77 1.77 1.77 16.0 

Space-perturbed 
array 

seune as above 1.65 1.76 , 2.10 19.8 

Exc.-adjusted 
array 

1.00 0.89 O.67 0.59 

o.ho 

same as above 78.1 

Optimized 
array 

1.00 0.86 0.59 1.66 1.72 1.7^ 181.9 

TABLE  IV 

SNR Optimization for Seven-Element Endfire Array 

a = 15,    \ = 2 (—)  ,  ^"tö (IT1    do = 0- 

$ 
m 

0.84 rait - 0 m 

Excitations K-%i (vvf (V^! GSNR 

Uniform 
cophasal 
array 

I =1.00 
0 

1^1.00 I2=1.00 I,=1.00 
0.84 

0.65 

0.84 0.84 1%8 

'     0 
01=oo 02=O0 *ro° 

Space- 
perturbed 
array 

same aa~ above 0.80 O.96 26.6 

Exc- 
adjusted 
perturbed 
array 

I =1.00 
0 

1^0.75 I2=0.54 I =0.14 

same as above 745.7 
0=0° 

0 
0^5.5° 02=57.7O 05=4O.2Ü 

Optimised 
array 

1 

I =1.00 
0 

1^0.75 1^0.3^ i5=o.i4 
0.64 O.78 0.95 891.4 

0=0° 
0 

... 

01=45.ifO 02=6l.8o 05=5O.6O 
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1 

Array 
center line 

i 1.00   0.99        O.96 0.80 
• • • • 

kl,79|-|-i.7(|-f-i.66|-j 

(a)  Gain optimized array- 

Array 
center line 

ll.OO      0.86 0.59 O.kQ 
• • • • 

-1.66|-^-1.74-f-1.7^H 

(a) Sm optimized array 

Optimized array 

Equally spaced. 
f     uniformly excited 

array 

0      1/6      1/5      1/2      2/3      5/6 
(\/2jtd)* 

(b)    Radiation pattei'ns 
Fig.  1.    Gain optimization for 
seven-element broadside array. 

(b)    Radiation patterms 

Fig. 5.    SNR optimization for seven- 
element broadside array. 
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Fig.  k,    SNR optimization for feeven-element endfire Array. 
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